

## Green ICT hub for resource-optimized electronics production

# Substitution of N-methyl-2-pyrrolidone for semiconductor technologies

Dr. Kirstin Bornhorst, Falah Qasem Ali Al-Falahi, Dr. Christian Drabe, Dr. Zhiqiu Lu, Maria Esperanza Navarro Fuentes, Maximilian Wagner

## 1 Motivation

N-methyl-2-pyrrolidone (NMP) is a commonly used solvent in the semiconductor industry. This chemical enables the precise structuring of thin layers (lift-off process) and the cleaning of surfaces (resist stripping), which is particularly important to ensure the quality and performance of semiconductor components.

Since 2020, the use of NMP has been restricted in accordance with XVII of the REACH Regulation. NMP is classified as toxic for reproduction and can harm the unborn child.

For this reason, there is great interest in substituting the material.

## 2 NMP alternatives

**3** Overview of technologies & results

#### NMP technologies at IPMS

|                           | Paint peeling                                                                                                                             | Lift-off                                                                                                                                 |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Photoresist type          | Positive                                                                                                                                  | Negative                                                                                                                                 |  |  |  |
| photoresist               | <ul> <li>AR-PC5000/3.1</li> <li>(SPR 700-1.8 -&gt; CMR substance since 2023)</li> </ul>                                                   | <ul> <li>nLof AZ2070</li> <li>AR-N2220</li> </ul>                                                                                        |  |  |  |
| Layer thickness           | <ul> <li>34 (17) μm</li> </ul>                                                                                                            | <ul> <li>7.5 μm</li> </ul>                                                                                                               |  |  |  |
| Process temperature (NMP) | ■ 22 °C                                                                                                                                   | ■ 40 °C                                                                                                                                  |  |  |  |
| Wafer material            | Si, USG, Al O <sub>23</sub> , AlSiTi                                                                                                      | ∎ Ta, Ta O <sub>25</sub>                                                                                                                 |  |  |  |
| Process requirements      | <ul> <li>No movement, ultrasound or<br/>spinning process</li> </ul>                                                                       | <ul> <li>Ultrasound support possible</li> </ul>                                                                                          |  |  |  |
| Process                   | <ul> <li>NMP</li> <li>IPA + IPA</li> <li>DI-H<sub>2</sub> O high-flow flush</li> <li>Dry in the N<sub>2</sub> river</li> </ul>            | <ul> <li>NMP</li> <li>IPA</li> <li>DI-H<sub>2</sub> O Quick dump process</li> <li>Centrifugal process</li> </ul>                         |  |  |  |
| Requirements              | None(s):<br>Paint residues<br>Damage to the structures<br>Influencing the mirror reflection<br>Bonding<br>Influence on movable structures | <ul> <li>Open structures</li> <li>None:</li> <li>Paint residues</li> <li>Open structures</li> <li>No damage to the structures</li> </ul> |  |  |  |

## A Gazzfläcke Abscheidung von Ta/Ta.

A = Ganzfläche Abscheidung von Ta/Ta<sub>2</sub>O<sub>5</sub> = Teilweise Beschichtung der

At Fraunhofer IPMS, NMP has proven itself as a solvent for two technologies for the removal of photoresists.

The NMP replacement product should meet the following requirements:

- Removal of positive and negative coatings
- Low hazard classification
- Suitable for semiconductor applications
- No etching of the layers to be cleaned (Si, Poly-Si, SiO<sub>2</sub>, Al, AlSiCu, Al O<sub>23</sub>, Ta, Ta O )<sub>25</sub>
- Product can be removed without leaving any residue
- Follow-up cleaning with IPA and/or DI-H<sub>2</sub> O possible.
- Operating temperature: RT 65 °C
- High flash pct. >60 °C; High boiling pct. >90 °C, Melting point <10 °C</p>
- Suitable for use in the manual wet bench
- Material compatibility (stainless steel, PE-EL PFA, FFKM)
- Suitable for ultrasonic applications

After extensive research, only a few materials meet the above requirements:

| Product   | Main ingredients                         | Process temp.<br>[°C] | Fp.<br>[°C] | Smp.<br>[°C] | Sdp.<br>[°C] |
|-----------|------------------------------------------|-----------------------|-------------|--------------|--------------|
| NMP       | N-methyl-pyrrolidone                     | 22, 40                | 86          | -24          | 203          |
| Product A | Aqueous mixture with ethers and alcohols | 50                    | 77          | -16          | 97           |
| Product B | Dimethyl adipate                         | 50                    | 100         | -20          | 196-225      |
| Product C | Dimethyl sulfoxide, diglyolamine (<10 %) | 50                    | 94          | <10          | 189          |

#### Contact

Dr. Kirstin Bornhorst Kirstin.bornhorst@ipms.fraunhofer.de Fraunhofer IPMS Maria-Reiche-Straße 2, 01109 Dresden www.ipms.fraunhofer.de



### Defect density during paint stripping of product B with Resist SPR700-1.8

| Substrate Remover                                                                                 | AI O <sub>23</sub> | USG | Si  |
|---------------------------------------------------------------------------------------------------|--------------------|-----|-----|
| NMP                                                                                               | 3547               | 231 | 569 |
| <b>Product B</b><br>after parameter adjustment (paint thickness, process time and<br>temperature) | ~3500              | 276 | 488 |

#### **Overview of the results**

| Process    | Paint peeling |             |                        |             | Lift-off        |          |                |          |
|------------|---------------|-------------|------------------------|-------------|-----------------|----------|----------------|----------|
| Parameters | Defects       |             | Roughness & reflection |             | Open structures |          | Paint residues |          |
| Resist     | AR-PC5000     | SPR 700-1.8 | AR-PC5000              | SPR 700-1.8 | AZ2070          | AR-N2220 | AZ2070         | AR-N2220 |
| NMP        | $\odot$       | ٢           | $\odot$                | ٢           | $\odot$         |          | 0              | ☺        |
| Product A  | -             | 3           | -                      | ٢           | $\bigcirc$      | -        | 0              | -        |
| Product B  | $\bigcirc$    | 0           | $\odot$                | 0           | $\odot$         | (;)      | ()             | (3)      |
| Product C  |               | -           |                        | -           | ٢               |          | 00             |          |

# Outlook

4

For a final conversion of both processes to a different product, it is necessary to test further NMP alternatives or product C for paint stripping and/or to further adapt the technological processes.

#### GEFÖRDERT VOM

