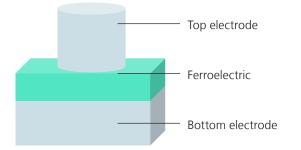


Engineered for Automotive Applications and Back-End-of-Line Integration


High-Performance Ferroelectric HfO₂ Stack

Fraunhofer IPMS offers advanced HfO₂-based ferroelectric stacks, ideal for applications in ferroelectric memories and smart sensors for the automotive industry.

Highlights

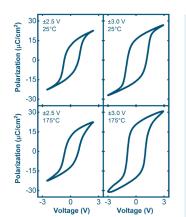
- High Temperature and Bias Resilience: Maintains low leakage under extreme conditions up to 175°C and 4 MV/cm.
- Enhanced Stability: Superior time- and temperature-dependent imprint performance over standard fluoritestructured films.
- Back-End-of-Line Compatibility: Seamlessly integrates with existing manufacturing processes for automotive applications.

Technical Specifications:

- Material Composition: HfO₂-based ferroelectric material
- Thickness: 10 nm
- Operating Voltage Range: 2.5V 3.0V
- Operation Temperature Range: ≤ 175°C
- Polarization: $2P_r \ge 23 \ \mu C/cm^2$
- Endurance: up to 10^6 . ($T_{prg} = 0.1$ ms)

Back-End-of-Line Integration:

- Functionalization Temperature: ≥ 400°C
- Annealing duration ≥ 60s

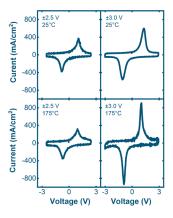

Polarization Characteristics

Measurement Conditions

Voltage range for PV plot	± 2.5 V ± 3.0 V
Frequency of DHM measurement	1 kHz
Number of wake-up cycles for PV plot	104
Frequency of wake-up cycling for PV plot	10 kHz

Figures of Merit

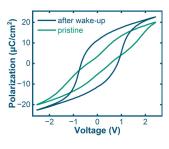
2.5 MV/cm	@25 °C	@175 °C
Remanent polarization 2P _r	23µC/cm ²	24 µC/cm ²
Coercive field 2E _c	1.5 MV/cm	1.5 MV/cm
3.0 MV/cm	@25 °C	@175 °C
Remanent polarization 2P _r	32 µC/cm ²	40 µC/cm ²
Coercive field $2E_c$:	2.0 MV/cm	2.0 MV/cm


Contact

Dr. David Lehninger Memory Technologies +49 351 2607-3204 david.lehninger@ ipms.fraunhofer.de

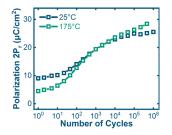
Fraunhofer IPMS – Center Nanoelectronic Technologies (CNT) An der Bartlake 5 01109 Dresden, Germany

www.ipms.fraunhofer.de


Displacement and Leakage Current Characteristics

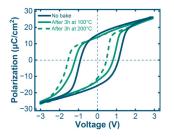
Measurement Conditions

Voltage range for JV plot	± 2.5 V ± 3	.0 V
Frequency of DHM measurement	1 kHz	
Number of wake-up cycles for PV plot	104	
Frequency of wake-up cycling for PV plot	10 kHz	
Figures of Merit		
2.5 MV/cm	@25 °C	@175 °C
Max. current density at FE switching	350 mA/cm ²	350 mA/cm ²
Coercive field 2E _c	1.5 MV/cm	1.5 MV/cm
3.0 MV/cm	@25 °C	@175 °C
Max. current density at FE switching	600 mA/cm ²	900 mA/cm ²


Wake-Up Characteristics

Measurement Conditions

DHM frequency	1 kHz
FM frequency	10 kHz
Voltage range	± 2.5 V
Figures of Merit	
Number of field cycles needed for wake-up	5 x 10³
$2P_r$ (virgin)/ $2P_r$ (cycled)	27 %
Pre-cycled P/P _s	0.16
Post-cycled P/P	0.52


Endurance Characteristics

Measurement Conditions

FM frequency (pulse duration)	10 kHz (0.1 ms)	
Pulse-Amplitude	± 2.5 V	
Figures of Merit		
2.5 MV/cm	@25 °C	@175 °C
Number of field cycles to breakdown	10 ⁶	4.6 x 10⁵

Imprint

Measurement Conditions

DHM frequency	1 kHz
Voltage range	± 3.0 V
Figures of Merit	
Imprint after 3 h; 100 °C	0.3 V
Imprint after 3 h, 200 °C	0.6 V

Need Customized Ferroelectric Solutions for Your Automotive Applications?

We offer customization to meet your specific requirements and ensure optimal performance. Our ferroelectric stack can be tested within your platform or ours to verify compatibility with your needs.

Partner with Fraunhofer IPMS (Center Nanoelectronic Technologies) to elevate your automotive applications with our innovative ferroelectric technology. Contact us today to discuss your requirements and arrange a testing session.