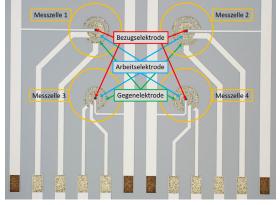


Elektrochemischer Analytikchip

Elektrochemischer Analytikchip, Variante 6, Verkapselt auf Keramikplatine, für die elektrochemische Messung für Flüssigkeiten.

Dienstleistung

In der elektrochemischen Analytik ist die Messung von Spannungen und Strömen zur Ermittlung von Stoffeigenschaften und Stoffkonzentrationen essentiell. Es kommen dabei zumeist Gold- oder Platinelektroden in Kombination mit Bezugsbzw. Referenzelektroden, wie Ag/AgCl, zum Einsatz. Konventionelle Messaufbauten haben dabei den Nachteil mit Analytmengen von mindestens 20 ml zu arbeiten. dementsprechend groß sind die verwendeten Elektroden. Je nach Messverfahren und Messbedingungen kommt es schnell zum Verschleiß bzw. Vergiftung der Elektroden, die dann ersetzt oder mühsam gereinigt werden müssen – ein Kostenfaktor bei heutigen Edelmetallpreisen, zudem schlecht für die Umwelt. Insbesondere für potentiometrische und voltammetrische Messungen sind daher die IPMS Analytik-Chips geeignet. Die 5 x 5 mm2 großen Chips bieten verschiedene Elektrodengeometrien und -materialien für Arbeits-, Gegen- und Referenzelektroden, sind leicht zu handhaben und aufgrund ihres Aufbaus ressourceneffizient nur mit geringen Mengen an Edelmetallen versehen. Ein weiterer Vorteil sind die präzisen Elektrodenanordnungen und -flächen. Die Chips lassen sich entweder direkt mit Messadaptern nutzen oder

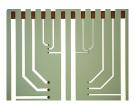

können auf einer keramischen Trägerplatine verwendet werden. Die Keramikplatinen haben Abmessungen von 30 x 9,3 x 0,63 mm3 und verfügen über 6 Kontakte, somit sind derzeit maximal 2 Messzellen je Chip nutzbar. Ein einziger Analyttropfen (~20 μl) reicht dabei bereits aus. Der Aufbau ist sowohl in wässrigen (pH 2 ...pH 10) als auch in den meisten organischen Lösungsmitteln stabil. Als Elektrodenmaterialien sind Gold, Silber, Kupfer, Platin verfügbar. Schichtdicken: 1 μm bis zu 3 μm. Weitere Metalle und Schichtdicken auf Anfrage. Kundenspezifische Chips, Sensoren, Elektrodengeometrien und Elektrodenmaterialen sind möglich, somit lässt sich ein breites Anwendungsspektrum abdecken.

Contact

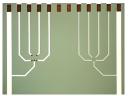
Dr. Olaf Rüdiger Hild Tel. 49 351 8823-450 olaf.hild@ipms.fraunhofer.de

Fraunhofer Institute for Photonic Microsystems IPMS Maria-Reiche-Str. 2 01109 Dresden Germany

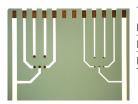
www.ipms.fraunhofer.de

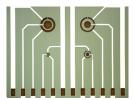


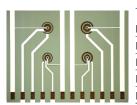
Nahaufnahme des Chips Nr. 6 mit 4 verschiedenen Messzellen, die jeweils über 3 Elektroden verfügen.

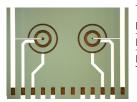


Chipmodul mit Analyttropfen beladen im Messadapter zur Messung bereit.


Verfügbare Chipgeometrien und Elektrodenmasse


Elektrodenanordnung 1	Elektrodengeometrie	Elektrodenabstand	
Messzelle 5 – 3x_D20 μm_50 μm	20 μm, rund	50 μm	
Messzelle 6 – 3x_D50 μm_100 μm	50 μm, rund	100 μm	
Messzelle 7 – 3x_D50 μm_200 μm	50 μm, rund	200 μm	
Messzelle 8 – 3x_D100 μm_200 μm	 100 μm, rund	200 μm	


Elektrodenanordnung 2	Elektrodengeometrie	Elektrodenabstand	
Messzelle 13 – 5x_D20 μm_80 μm	20 μm, rund	80 μm	
Messzelle 14 – 5x_D50 μm_160 μm	50 μm, rund	160 μm	


Elektrodenanordnung 3	Elektrodengeometrie	Elektrodenabstand	
Messzelle 15 – 5x_D50 μm_320 μm	50 μm, rund	320 μm	
Messzelle 16 – 5x_D100 μm_320 μm	100 μm, rund	320 μm	

Elektrodenanordnung 4	Elektrodengeometrie	Elektrodenabstand	Reale Fläche µm²
Messzelle 17 – 3x_D60 μm_30 μm	60 μm, rund	30 μm	2800, 4300
Messzelle 18 – 3x_D130 μm_60 μm	130 μm, rund	60 μm	13000, 13000
Messzelle 19 – 3x_D330 μm_60 μm	330 μm, rund		85500, 85500
Messzelle 20 – 3x_D260 μm_120 μm	260 μm, rund	120 μm	53000, 53000

Elektrodenanordnung 5	ID, d	Radien	Reale Fläche µm²
Messzelle 25 – WE-CE-RE	 50 μm, 50 μm	75 μm, 125 μm, 175 μm, 202 μm	27000, 27000
Messzelle 26 – WE-CE-RE	50 μm, 50 μm	75 μm, 125 μm, 175 μm, 223 μm	27000, 54000
Messzelle 27 – WE-CE-RE	50 μm, 50 μm	75 μm, 159 μm, 209 μm, 232 μm	54000, 27000
Messzelle 28 – WE-CE-RE	50 μm, 50 μm	75 μm, 159 μm, 209 μm, 253 μm	54000, 54000

Elektrodenanordnung 6	ID, d	Radien	Reale Fläche µm²
Messzelle 29 – WE-CE-RE	 100 μm, 200 μm	250 μm, 350 μm, 550 μm, 603 μm	180000, 180000
Messzelle 30 – WE-CE-RE	50 μm, 200 μm	225 μm, 333 μm, 533 μm, 588 μm	180000, 180000

*WE = Working electrode (Arbeitselektrode), CE = Counter electrode (Gegenelektrode); RE = Reference electrode (Referenzelektrode)

Teile der beschriebenen Forschungsarbeiten sind mit EFRE-Mitteln der europäischen Union sowie aus Steuermitteln des Freistaates Sachsen durch die Sächsische Aufbaubank, Verbundnummer: 3784, gefördert worden.

